

magnetec effect of Eledour cuosent

Electric current through a retalic conductor produces a magnetic field around et.

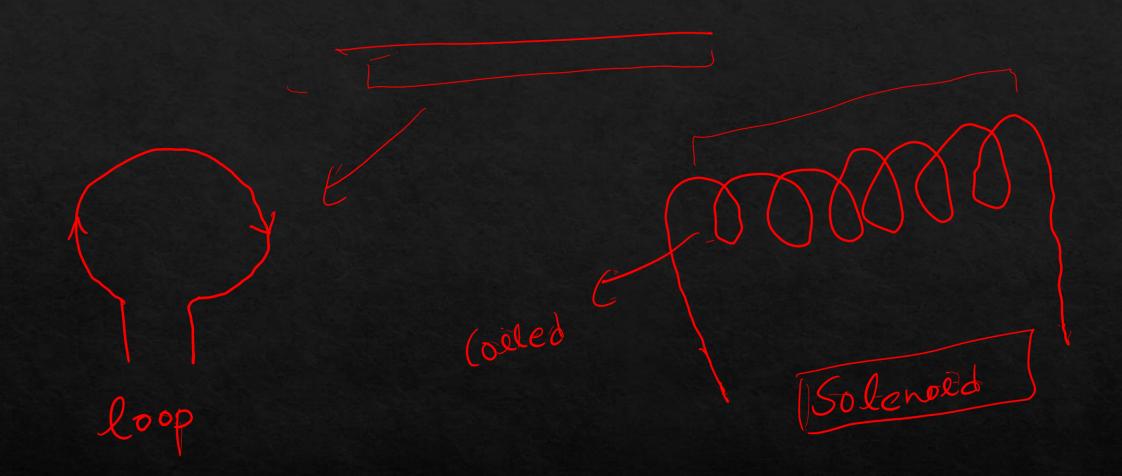
Magneter field-

Space surrounding a magnet within a magnetic force is experienced. nagrelec

Compaul

Magnélée field lénes -Dénection (MF magnétec field leves S Imagérary lèves used to represent magnètei feeld. Originate forom Northpole and end ets southpole but lusiede the magnet ets forom south end ets southpole

to nosithe

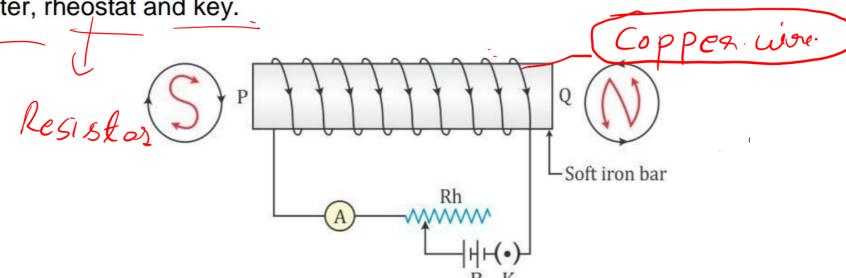

2) - They are contienous and formers closed curvey. 3)-Targent al any poient on magnetic field lines gever the direction of magnetic field. 4) - Magnetez field lines neves intersect eachother. Strongen. In field lives apart, field es weak.

Magnéter field due to a current through a straight Conductornogretie M field lines Contre at were. Comagnitude of magnétic féeld encreases it current encreased A Maxwell's Right hand thumb Rule-If you hold the current carrier conductor in the grop of your key hand in

Such way that Strecked thumb of current, then charl of en dérection férgers well geves the direction of magnetic field. magnétic field due to a current through Cincular loop
Streigth of MF can also increase by increase no-T i of tunus -> Also by lh Creasing the Current.

MF due to cunnent in a Solewood-Solewed A coil of many cincular turns of insulated copper wire wrapped Closely en shape Cylin des. Solehard.

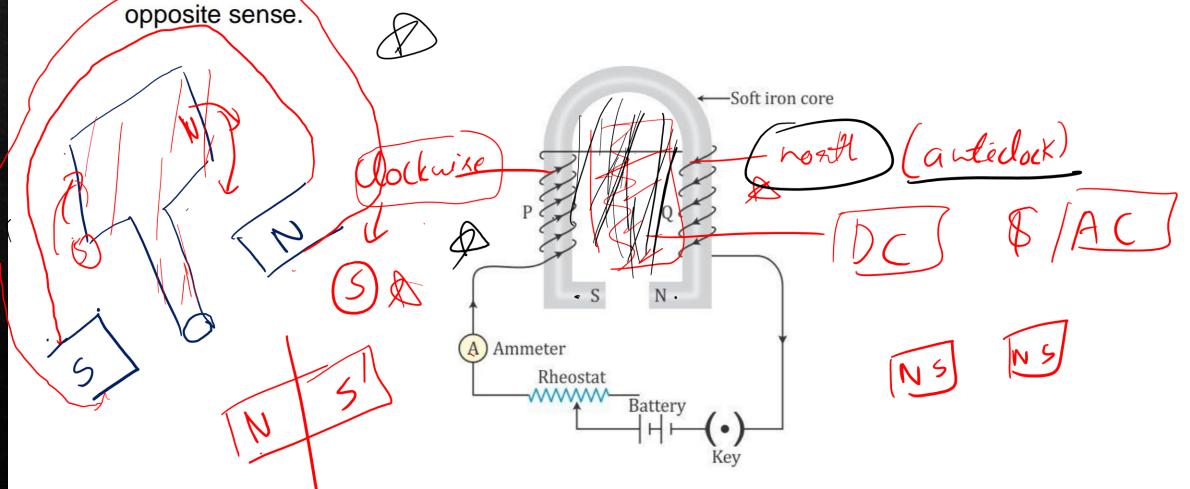
De Same as én loop.



 An electromagnet is a temporary strong magnet made of a piece of soft iron when current flows in the coil wound around it. It is an artificial magnet.

(a) I-shaped electromagnet (or bar magnet)

• An I-shaped electromagnet is constructed by winding a thin insulated copper wire in the form of a solenoid around a straight soft iron bar. The ends of the wire are connected to a battery through an ammeter, rheostat and key.



A which soft iron bar A which is a soft iron bar in the soft iron bar i

- When current is passed through the winding of a solenoid by closing the key, one end of the bar becomes the South Pole (S) because the current at this face is clockwise, while the other end at which the current is anticlockwise becomes the North Pole (N).
- The soft iron bar acquires magnetic properties only when an electric current flows through the solenoid and loses magnetic properties when the current is switched off; thus, it is a temporary magnet. Such magnets are commonly used in a relay.

(b) U-shaped (or horseshoe) electromagnet

To construct a horseshoe electromagnet, a thin insulated copper wire is spirally wound on the arms of a U-shaped soft iron core, such that the winding on the two arms as seen from the ends is in the

- When current is passed through the winding by closing the key, one end of the arm becomes the South Pole (S) as the current at this face is clockwise, and the other end of the arm becomes the North Pole (N) as the current at this face is anticlockwise.
- Thus, we get a very strong magnetic field in the gap between the two poles. The magnetic field in the gap vanishes as the current in the circuit is switched off. It is also a temporary magnet. Such magnets are used in a DC motor, AC generator etc.

Ways of increasing the magnetic field of an electromagnet

- The magnetic field of an electromagnet (I- or U-shaped) can be increased by the following two ways:
 - By increasing the number of turns of winding in the solenoid
 - By increasing the current through the solenoid

Uses of Electromagnets

Electromagnets are mainly used for the following purposes:

To lift and transport large masses of iron scrap, girders, plates etc.

To load furnaces with iron.

To remove pieces of iron from wounds.

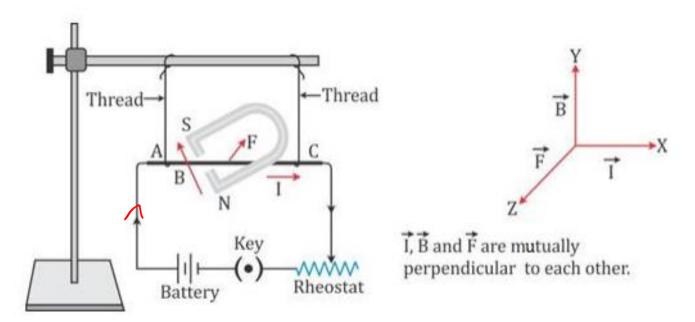
In several electrical devices such as electric bell, telegraph, electric tram, electric motor, relay microphone, loud speaker etc.

Head

In scientific research, to study the magnetic properties of a substance in a magnetic field.

Permanent Magnet

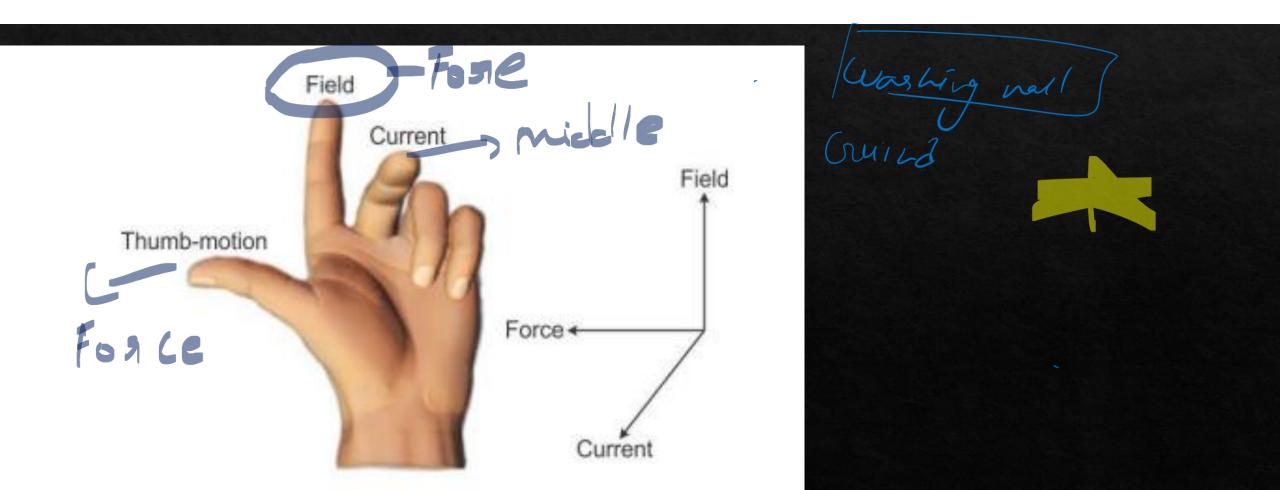
- A permanent magnet is a naturally occurring magnet.
- A strong permanent magnet is made of steel instead of soft iron.


These magnets are used in electric meters (e.g. galvanometer, ammeter, voltmeter) and in a magnetic

compass etc.

Electromagnet	Permanent magnet		
It produces a magnetic field as long as the current flows through its coils.	It produces a permanent magnetic field.		
It is made of soft iron.	It is made of steel.		
The magnetic field strength can be changed.	The magnetic field strength cannot be changed.		
The polarity of an electromagnet can be	The polarity of an electromagnet cannot be		
reversed. (SN)	reversed.		
It can be easily demagnetised by switching off the current	It cannot be easily demagnetised.		

Force on a Current-carrying Conductor in a Magnetic Field


- When no current flows in the conductor, no force acts on the conductor and the conductor does not move. The wire is vertically below the support.
- When current is passed in the conductor, a force acts on the conductor in a direction perpendicular to both the direction of the current and the direction of the magnetic field.
- When the direction of the current through the conductor is reversed, the direction of force is also reversed.
- On reversing the direction of the magnetic field, the direction of force is reversed.
- When a conductor is placed such that the current in it is in the direction parallel to the direction of the magnetic field, no force acts on the conductor and it does not move.

Force Scurrent (t) Swine-length Stregth. Stregth.

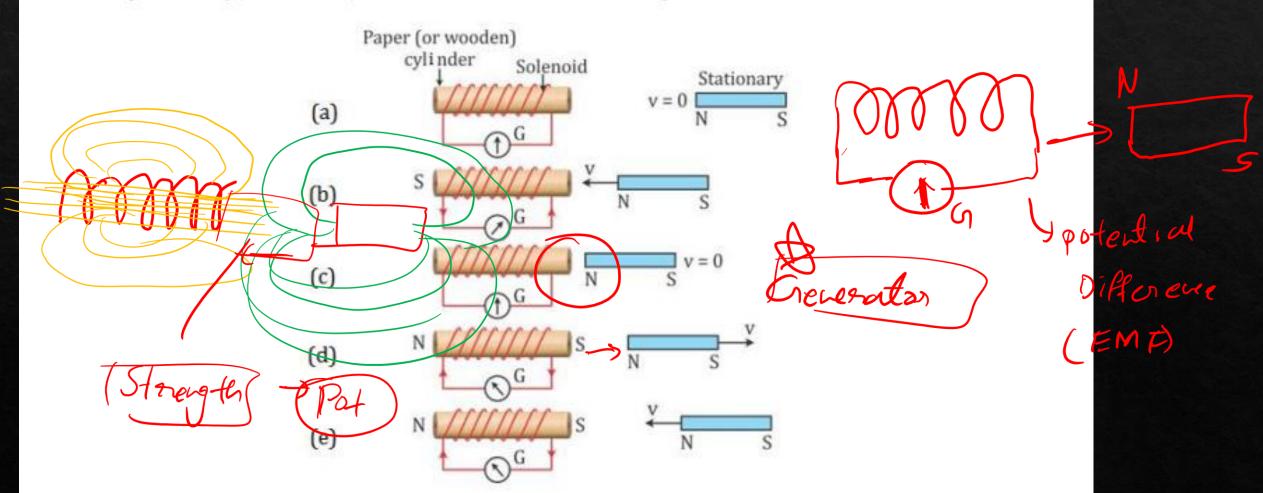
- Magnitude of force
- The magnitude of force acting on a current-carrying conductor placed in a magnetic field is found experimentally to depend on the following three factors:
 - i. The force is directly proportional to the current I flowing in the conductor, i.e. $F \propto I$.
 - ii. The force is directly proportional to the strength of the magnetic field B, i.e. $F \propto B$.
 - iii. The force is directly proportional to the length I of the conductor, i.e. $F \propto I$. F = IBI

Direction of force: The direction of force on a current-carrying conductor placed in a magnetic field is obtained by the Fleming's left-hand rule.

Fleming's left-hand rule: Stretch the forefinger, middle finger and thumb of your left hand mutually perpendicular to each other. If the forefinger indicates the direction of the magnetic field and the middle finger indicates the direction of the current, then the thumb will indicate the direction of motion of the conductor.

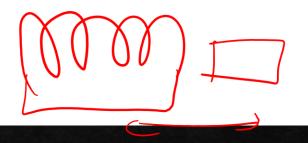
Simple DC Motor

An electric motor is a device which converts electrical energy into mechanical energy.


Principle: A DC motor works on the principle that when an electric current is passed through a conductor placed normally in a magnetic field, a force acts on the conductor as a result of which the conductor begins to move and mechanical energy (or work) is obtained. The direction of force is

obtained by Fleming's left-hand rule. Terlocal Soft iron core electrical ewy N Split rings (Stand St) Brushes Mechanical $(B_1 \text{ and } B_2)$

Ways of increasing the speed of rotation of a coil: The speed of rotation of a coil can be increased by $\mathcal{F} \mathcal{A}$


- Increasing the strength of the current in the coil
- Increasing the number of turns in the coil
- Increasing the area of the coil
- iv. Increasing the strength of the magnetic field

Whenever there is a change in the number of magnetic field lines associated with a conductor, an
electromotive force (emf) is developed between the ends of the conductor which lasts as long as the
change is taking place. This phenomenon is called electromagnetic induction.

- A current flows in the coil only when there is a relative motion between the coil and the magnet due to which the galvanometer connected with the coil shows deflection.
 - The direction of deflection in a galvanometer is reversed if the direction of motion (or polarity of the magnet) is reversed.
 - The current in the coil is increased
 - By the rapid motion of the magnet (or coil)
 - ii. By using a strong magnet
 - iii. By increasing the area and the number of turns in the coil

Faraday's Laws of Electromagnetic Induction

- i. Whenever there is a change in the magnetic flux linked with a coil, an emf is induced. The induced emf lasts as long as there is a change in the magnetic flux linked with the coil.
- The magnitude of the emf induced is directly proportional to the rate of change of the magnetic flux linked with the coil. When the rate of change of the magnetic flux remains uniform, a steady emf is induced.

Factors Affecting the Magnitude of Induced EMF

The magnitude of induced emf is equal to the rate of change of magnetic flux, i.e.

Induced e.m.f. = $\frac{\text{Change in magnetic flux}}{\text{Time in which the magnetic flux changes}}$

Thus, for a given coil and magnet, emf depends on the following two factors:

- (i) Change in the magnetic flux
- (ii) Time in which the magnetic flux changes

Rate of clay

Direction of Induced EMF

The direction of induced emf (and hence the direction of induced current) can be obtained by any of the following two rules:

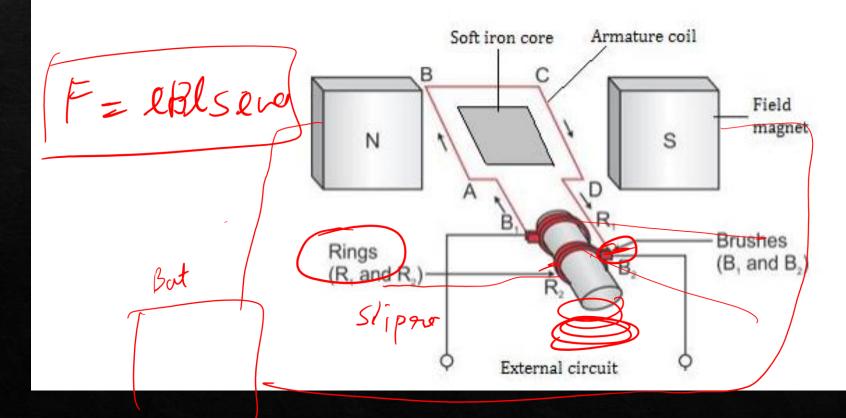
 Fleming's right-hand rule: Stretch the thumb, middle finger and forefinger of your right hand mutually perpendicular to each other. If the forefinger indicates the direction of the magnetic field and the thumb indicates the direction of the motion of the conductor, then the middle finger will indicate the direction of the induced current.

Direction of Induced EMF

The direction of induced emf (and hence the direction of induced current) can be obtained by any of the following two rules:

Fleming's right-hand rule: Stretch the thumb, middle finger and forefinger of your right
hand mutually perpendicular to each other. If the forefinger indicates the direction of the magnetic field
and the thumb indicates the direction of the motion of the conductor, then the middle finger will
indicate the direction of the induced current.

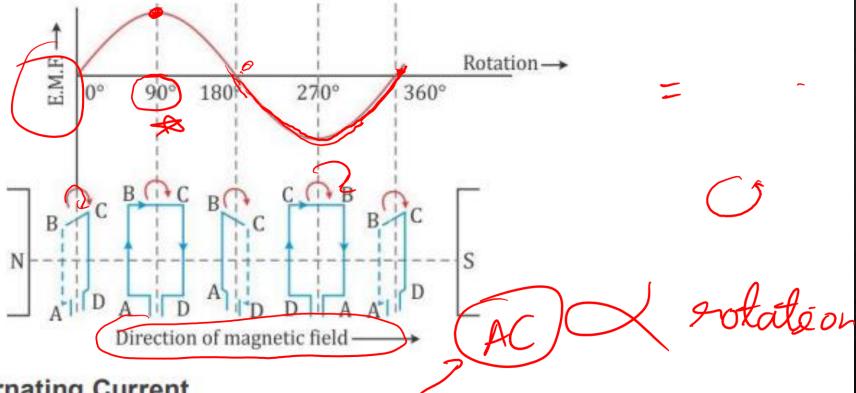
Lenz's law: The direction of induced emf (or induced current) always tends to oppose the cause which
produces it.


AC Generator

motos

Creverator

- Ar AC generator is a device which converts mechanical energy into electrical energy using the principle of electromagnetic induction.
- In a generator, a coil is rotated in a magnetic field. Due to rotation, the magnetic flux linked with the
 coil changes and therefore an emf is induced between the ends of the coil. Thus, a generator acts like
 a source of current if an external circuit containing a load is connected between the ends of its coil.



rechanical

Electrical

Energy

The figure below represents the emf induced between the ends of the coil with respect to the position
of the coil in the magnetic field when seen along the axis of rotation from the position of slip rings.

Frequency of Alternating Current

- In one complete rotation of the coil, we get one cycle of alternating emf in the external circuit.
- The alternating emf thus produced has a frequency which is equal to the frequency of rotation of the coil.
- If the coil makes n rotations per second, then the magnitude of induced emf is given as $e=e_0\sin 2\pi nt$ and the current is expressed as

(emf)

 $i = i_0 \sin 2\pi nt$

AC and DC

A current of constant magnitude and unique direction is called DC, while a current of changing magnitude and direction is called AC. A battery is a DC source, while an AC generator and the mains are AC sources.

Differences between AC and DC

Direct current (DC)	Alternating current (AC)
It is the current of constant magnitude.	It is the current of magnitude varying with time.
It flows in one direction in the circuit.	It reverses its direction while flowing in the circuit.
It is obtained from a cell (or battery).	It is obtained from an AC generator or the
	mains.

Advantages of AC over DC

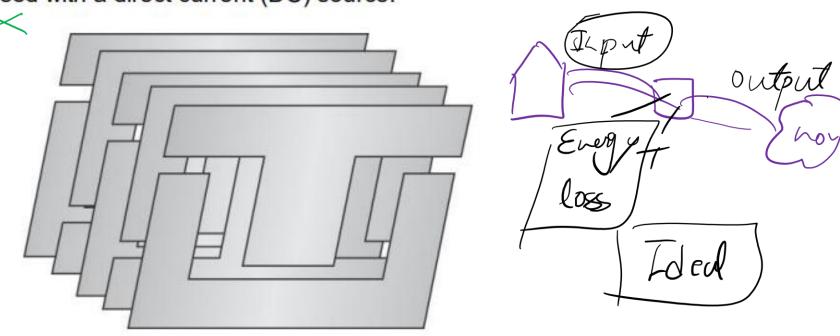
- The use of AC is advantageous over DC because the voltage of AC can be stepped up by using a step-up transformer at the power generating station before transmitting it over long distances. This reduces the loss of electrical energy as heat in the transmission line wires.
- The AC is then stepped down to 220 volt by using step-down transformers at the successive substations before supplying it to the houses or factories.
- If DC is generated at the power generating station, then its voltage cannot be increased for transmission. Due to the passage of high current in the transmission line wires, there will be a huge loss of electrical energy as heat in the line wires.

ectorialy !

Distinction between an AC Generator and DC Motor

AC generator	DC motor
It is a device which converts mechanical	It is a device which converts electrical
energy into electrical energy.	energy into mechanical energy.
It works on the principle of electromagnetic induction.	It works on the principle of force acting on a
	current-carrying conductor placed in a
	magnetic field.
In a generator, the coil is rotated in a magnetic field to produce electric current.	In a DC motor, the current from the DC
	source flows in the coil placed in a magnetic
	field due to which the coil rotates.
It makes use of two separate coaxial slip	It makes use of two parts of a slip ring which
rings.	acts as a commutator.

Transformer



A transformer is a device by which the amplitude of an alternating emf can be increased or decreased.

 A transformer does not affect the frequency of the alternating voltage. The frequency remains unchanged (= 50 Hz).

A transformer works on the principle of electromagnetic induction and makes use of two coils. When
there is a change of magnetic field lines due to varying current in one coil, an induced varying current
of the same frequency flows in the other coil.

A transformer cannot be used with a direct current (DC) source.

- The ratio of number of turns N_s in the secondary coil to the number of turns N_p in the primary coil (i.e. N_s/N_p) is called the turns ratio.

 Turns ratio = $n = \frac{Number of turns in secondary coil N_s}{Number of turns in primary coil N_s}$
- The advantage of using a closed core is that it gives a closed path for the magnetic field lines and therefore almost all the magnetic field lines caused by the <u>current</u> in the primary coil remain linked with the secondary coil.
- When the terminals of the primary coil are connected to the source of alternating emf, a varying current flows through the primary coil. This varying current produces a varying magnetic field in the core of the transformer. Thus, the magnetic field lines linked with the secondary coil vary.
- The change of magnetic field lines through the secondary coil induces an emf in it. The induced emf varies in the same manner as the applied emf in the primary coil varies and thus has the same frequency as that of the applied emf.

For a transformer, we have

E.m.f. across the secondary coil E_s = Number of turns in secondary coil N_s Number of turns in primary coil N_s

 $\frac{E_s}{E_p} = \frac{N_s}{N_p} = n$

Es = Ns Ep Np

For an ideal transformer, when there is no energy loss, the output power will be equal to the input power, that is

$$E_sI_s = E_pI_s$$

Types of Transformers

The two types of transformers are the step-up transformer and the step-down transformer.

Step-up transformer: The transformer used to change a low voltage alternating emf to a high voltage alternating emf (of same frequency) is called a step-up transformer. In a step-up transformer, the number of turns in the secondary coil is more than the number of turns in the primary coil.

Step-down transfermer: The transformer used to change a high voltage alternating emf to a low voltage alternating emf (of same frequency) is called a step-down transformer. In a step-down transformer, the number of turns in the secondary coil is less than the number of turns in the primary

coil.

Core

_		_	
	-		-
_			
			•
_		_	•

10.000	2. The primary coil of a transformer and the secondary coil has 8 turns. It a 220 V a.c. supply. What will	has 800 turns is connected to be the output
V	voltage ?	Ans. 2.2 volt

$$E_{S} = N_{S} \times E_{S} = 8 \times 229$$

$$N_{P} = 800$$

$$E_5 = \frac{22}{10} = 2.2 \times 10^{-10}$$

3. A transformer is designed to give a supply of 8 V to ring a house-bell from the 240 V a.c. mains. The primary coil has 4800 turns. How many turns will be in the secondary coil?

Ans. 160

ct when

co transformer are

$$Np = 4800$$
 $Ns = ?$
 $Es = 80$
 $Ep = 240$

CL WHICH

on if the

4. The input and output voltages of a transformer are 220 V and 44 V respectively. Find: (a) the turns ratio, (b) the current in input circuit if the output current is 2 A.

Ans. (a) 1:5 (b) 0.4 A

$$E_p = 2200$$
 $E_s = 440$
 $(1) - 5 = 24$
 $I_s = 24$
 $I_s = 24$

$$E_{SI_{S}} = E_{P}F_{P}$$
 $P = \frac{44 \times 2}{220} = \frac{86}{22910} = \frac{0.4}{22910}$

y you. own? e kept

North

1. The magnetic flux through a coil having 100 turns decreases from 5 milli weber to zero in 5 second. Calculate the e.m.f. induced in the coil.

Ans. 100 mV

bas 800 turns

